If it's not what You are looking for type in the equation solver your own equation and let us solve it.
127128x^2-36136x+35=0
a = 127128; b = -36136; c = +35;
Δ = b2-4ac
Δ = -361362-4·127128·35
Δ = 1288012576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1288012576}=\sqrt{16*80500786}=\sqrt{16}*\sqrt{80500786}=4\sqrt{80500786}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36136)-4\sqrt{80500786}}{2*127128}=\frac{36136-4\sqrt{80500786}}{254256} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36136)+4\sqrt{80500786}}{2*127128}=\frac{36136+4\sqrt{80500786}}{254256} $
| 7a-5a=16 | | 2(2w+3)=6w-2(w-6) | | 80-16x=8x+40 | | 2a+17=5a+2 | | 2/3(6r+36)-3r=32 | | 8(x*1)=4x-8 | | 6b+b=14 | | 8x-3+2x+33=10x+30 | | 360=90+90+3x-5+4x+10 | | 5r-2r=12 | | -3+x=x+6 | | 19x-10+160=180 | | 13+5x-x=3x+5 | | 0.05(2t+4)=0.10(t+5)-0.30 | | 3=-3(1-3a)+3a | | 0.7+y=–1.34 | | 12,m=4 | | 5(x+1)=3x-11 | | X+(x+2)=209 | | 28=-2(3c+4)+12 | | 24=15x-6 | | 5a=2a+3a | | 2=(r+9)/7 | | -8(6-6n)=-240 | | 12x+6=2x+18 | | 18a-30=6a-18 | | 4(2-3x)+2x=28 | | -12-2a=14 | | -9x-12=3 | | 9y=2y-49 | | 94=-6a-7(a-6) | | -8(-4x-4)=192 |